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Abstract –  

The heat transfer characteristics of a laminar Coutte –Poiseulle flow is analyzed taking into account viscous dissipation. Some 

interesting result in terms of Brinkman number and heat flux ratio was observed. The case of lower plate being fixed and the upper 

plate moving with constant velocity and both  being imposed to different but constant  heat fluxes is considered.The energy equation 

is solved using Scilab 5.4.1 leading to expression in temperature profiles  and it is found that Brinkman number and speed of the moving 

upper plate has a great impact on thermal development. Keywords: Coutte-Poiseulle flow, heat flux, viscous dissipation. 

 
INTRODUCTION 

Flow of Newtonian fluids through various channels is of practical importance and heat transfer is dependent on flow conditions 

such as flow geometry and physical properties. Investigations in heat transfer behavior through various channels showed that the 

effect of viscous dissipation cannot be neglected for some applications, such as flow through micro-channels, small conduits and 

extrusion at high speeds[1]. 

However, the moving boundary deform the fluid velocity profile, and shears the fluid layer near the boundary, and thus, results 

in local changes in velocity gradient. Hence, the viscous dissipation effects cannot be neglected in heat transfer analysis of system 

associated with moving boundaries[2,3]. 

The thermal development of forced convection through infinitely long fixed parallel plates, both plates having specified constant 

heat flux had been investigated[4,5]. For the same but filled by a saturated porous medium, heat transfer analysis was done where 

the walls were kept at uniform wall temperature with the effect of viscous dissipation and axial conduction take into account [6]. 

In [7], it was concluded that in a porous medium, the absence of viscous dissipation effect can have great impact. 

This study is necessary specifically in the design of special heat exchanges and other devices where the dimensions have to be 

kept very small. Hence, the case of lower plate being fixed and the upper plate moving with constant velocity and both being 

imposed to different but constant heat fluxes is considered [8]. The energy equation is  solved using Scilab 5.4.1 leading to 

expression in temperature profiles , which could be useful to industrial applications. 

The heat transfer characteristics of a laminar Coutte –Poiseulle flow is analyzed taking into account viscous dissipation. Some 

interesting result in terms of Brinkman number and heat flux ratio was observed. 
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STATEMENT OF THE PROBLEM 

 

 

 

 

 

 
Figure 1. Notation to the Problem 

 
Consider two flat infinitely long parallel plates [ 9] distance W or 2W apart, where the upper plate is moving with constant 

velocity U and the lower plate is fixed. The coordinate system chosen is shown in figure 1. The flow through the plates is 

considered at a sufficient distance from the entrance such that it is both hydro-dynamically and thermally fully developed. The 

axial heat conduction in the fluid and through the wall is assumed to be negligible. 

The fluid is assumed to be Newtonian and with constant properties. The thermal boundary conditions are, the upper plate is kept 

at constant heat flux while the lower plate at different constant heat fluxes. 

 

MATHEMATICAL FORMULATION 

 
The momentum equation in the x-direction is described as 

 
 

𝑑2𝑢 
 

𝑑𝑦2 
=   

1  𝑑𝑃 

𝜇  𝑑𝑥 

 
(1) 

 

 

 

Where u is the velocity of the fluid and μ is the dynamic viscosity, P is the pressure. 

The velocity boundary conditions are u=0 when y=0 and u=U when y=W. 

Using the following dimensionless parameters: 

u* = u /m U* = U /m Y = y / W (2) 

The well-known velocity-distribution is, 
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u*=(3U*-6)(Y²-Y)+U*Y (3) 

where the mean velocity is given by 

 

U   = 
1 𝑤 

𝑢 𝑑𝑦 
 

 

 (4) 

m 
𝑊 

∫0 

 
 

For the above equation, expression for u is obtained by solving the momentum equation (1). 

The energy equation, including the effect of viscous dissipation, is given by 

 

u
𝜕𝑡 

2 

= 
𝛾 𝜕 𝑡 

+ 
𝜇 (

𝜕𝑢 
)2 

(5) 

𝜕𝑥 𝑃𝑟 𝜕𝑦2 𝜌𝑐𝑝 𝜕𝑦 

 
 

 

where the second term on the right-hand side is the viscous dissipative term. 

It is assumed that for a thermally fully developed flow with uniformly heated boundary walls, the longitudinal 

conduction term is neglected in the energy equation.[10 ]. 

Following this the temperature gradient along the axial direction is independent of transverse direction and is given 

by 

 

𝜕𝑇 
 

 

𝜕𝑥 
=  

𝜕𝑇1 

𝜕𝑥 
= 

𝜕𝑇2 

𝜕𝑥 
(6) 

 
 

Where T1 and T2 are upper and lower wall temperatures respectively. 

 

 

By taking 
 

 
𝛼 = 𝑘/𝜌𝑐𝑝, introducing the non-dimensional quantity, 

 
 

θ = T − T₁/(q₁W/k) (7) 

 

 

 

and defining a dimensionless constant β, 

 

𝛽  = 
 𝑃𝑟   𝜇𝑚 𝑘𝑊 

𝛾𝑞1 

 
𝑑𝑇1 

 

 

𝑑𝑥 

 
(8) 

 

 

 

and modified Brinkman as, 
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𝑚  𝐵𝑟𝑞1 = 
 𝜇 𝑢2 

2𝑊𝑞1 

 
(9) 

 

Equation (5) can be written as 

 

 

 

𝑑2𝜃 
 

 

𝑑𝑦2 
= 𝛽([3𝑈8 − 6][𝑌2 − 𝑌]{𝑈∗𝑌]) − 2𝐵𝑟𝑞1 ([3𝑈8 − 6][2𝑌 − 1]𝑈∗ )2 

 
(10) 

 

 

The thermal boundary conditions are, 

 
 

𝑘𝜕𝑇𝜕𝑦 ⁄= 𝑞₁ at y=W, or 𝜕𝜃𝜕𝑌 ⁄= 1 at Y=1, T=T₁ at y=W , or θ = 0 at Y=1. (11) 

The solution of the above thermal boundary conditions can be obtained. 

To evaluate β in the above equation, a third boundary condition is required, 

 

 
𝜕𝑇 

k 
𝜕𝑦 

 
= 𝑞1 𝑎𝑡 𝑦 = 0 𝑜𝑟 

 
𝜕𝜃 

 

𝜕𝑦 

 
= 1  at y = 1 (12) 

 
 

Using (11) and (12) in (10) an expression for 𝛽 can be obtained as 

 

𝛽  =    1 + 
𝑞2

 
𝑞1 

 
+ 8 𝑈∗2𝐵𝑟𝑞1 

 
− 24𝑈∗𝐵𝑟𝑞1 

 
+ 24𝐵𝑟𝑞1 

 
(13) 

 

 
The main equation (10) is solved using Scilab and the behavior of the Coutte Poiseuille flow is analysed and the 

temperature profile is plotted with variations of parameter to indicate the heated region. 

 

GRAPHICAL RESULT AND DISCUSSIONS 

For the purpose of discussion on the behavior of the Couette-Poiseuille flow, two types of graphs based on the 

analytical solutions are made. The temperature profile in the channel is plotted with variations of various parameters 

to indicate the heated region,. 

Temperature profiles against the channel Width for Various parameters: 

 
 

Figures 2,3,4 show the dimensionless temperature profile of θ versus Y, where the lower plate is insulated at five 

dimensionless velocities U* = -1.0, -0.5, 0.0, 0.5 and 1.0, and at three selected 
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𝐵𝑟𝑞1 values -0.01, 0.10 and 0.5 and also for q2/q1 = 0. The temperature distribution have similar pattern but different shapes, 

and all the curves converge at Y = 1, θ = 0(by definition). 

 
At Y = 0, the curves are vertical to satisfy the insulated condition. 

As expected, generally the motion of the upper plate tends to impart more heat into the fluid layer that are dragged along, 

unless off-set by the viscous dissipation effects. 

It is observed in figures 2,3 that when 𝐵𝑟𝑞1 = -0.01, and -0.1 the temperature distribution is negative which implies there is 

decrease in heat transfer. 

When 𝐵𝑟𝑞1 = 0.5, figure 4, θ manifests in a different way such that θ takes both negative and positive values. 

 

 

 

 

Figure 2. Temperature Profile at U* = -0.1,-0.5,0.0,0.5 and 1.0,Brq1 = -0.01 
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Fig3. Temperature Profile at U* = -0.1,-0.5,0.0,0.5 and 1.0 ,Brq1 = -0.10 

http://www.jetir.org/


© 2016 JETIR July 2016, Volume 3, Issue 7                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1701222 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1260 
 

 

 

 
 

 

Figure 4. Temperature Profile at U* = -0.1,-0.5,0.0,0.5 and 1.0 ,Brq1 = 0.5 

 

Conclusion 

 
Heat transfer with the effect of viscous dissipation has been analyzed. For fully developed Newtonian fluid flow between 

infinitely long parallel plates, where the lower plate is fixed and the upper plate is moving with constant velocity and when both 

plates are kept at different constant heat fluxes, the dimensionless temperature distribution given by equation (10) is solved using 

Scilab 5.4.1 The modified Brinkman numbers -0.01, -0.1, 0.5 are considered in the analysis. The behavior of the temperature 

distribution against these parameters are discussed. The Brinkman number, the speed of the moving plate have significant impact 

in the thermal development. 
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